Landscape and evolutionary dynamics of terminal-repeat retrotransposons in miniature (TRIMs) in 48 whole plant genomes
نویسندگان
چکیده
Terminal-repeat retrotransposons in miniature (TRIMs) are structurally similar to long terminal repeat (LTR) retrotransposons except that they are extremely small and difficult to identify. Thus far, only a few TRIMs have been characterized in the euphyllophytes and the evolutionary and biological impacts and transposition mechanism of TRIMs are poorly understood. In this study, we combined de novo and homology-based methods to annotate TRIMs in 48 plant genome sequences, spanning land plants to algae. We found 156 TRIM families, 146 previously undescribed. Notably, we identified the first TRIMs in a lycophyte and non-vascular plants. The majority of the TRIM families were highly conserved and shared within and between plant families. Even though TRIMs contribute only a small fraction of any plant genome, they are enriched in or near genes and may play important roles in gene evolution. TRIMs were frequently organized into tandem arrays we called TA-TRIMs, another unique feature distinguishing them from LTR retrotransposons. Importantly, we identified putative autonomous retrotransposons that may mobilize specific TRIM elements and detected very recent transpositions of a TRIM in O. sativa. Overall, this comprehensive analysis of TRIMs across the entire plant kingdom provides insight into the evolution and conservation of TRIMs and the functional roles they may play in gene evolution. . CC-BY 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/010850 doi: bioRxiv preprint first posted online Oct. 29, 2014;
منابع مشابه
Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes.
A new group of long terminal repeats (LTR) retrotransposons, termed terminal-repeat retrotransposons in miniature (TRIM), are described that are present in both monocotyledonous and dicotyledonous plant. TRIM elements have terminal direct repeat sequences between approximately 100 and 250 bp in length that encompass an internal domain of approximately 100-300 bp. The internal domain contains pr...
متن کاملA Novel Family of Terminal-Repeat Retrotransposon in Miniature (TRIM) in the Genome of the Red Harvester Ant, Pogonomyrmex barbatus
We report the first described non-plant family of TRIMs (terminal-repeat retrotransposons in miniature), which are small nonautonomous LTR retrotransposons, from the whole-genome sequence of the red harvester ant, Pogonomyrmex barbatus (Hymenoptera: Myrmicinae). Members of this retrotransposon family, named PbTRIM, have typical features of plant TRIMs in length and structure, although they shar...
متن کاملEvolutionary Dynamics of Retrotransposons Assessed by High-Throughput Sequencing in Wild Relatives of Wheat
Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot ...
متن کاملA Novel Terminal-Repeat Retrotransposon in Miniature (TRIM) Is Massively Expressed in Echinococcus multilocularis Stem Cells
Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal re...
متن کاملRapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Oryza Species
The dynamics of long terminal repeat (LTR) retrotransposons and their contribution to genome evolution during plant speciation have remained largely unanswered. Here, we perform a genome-wide comparison of all eight Oryza AA-genome species, and identify 3911 intact LTR retrotransposons classified into 790 families. The top 44 most abundant LTR retrotransposon families show patterns of rapid and...
متن کامل